FP1/75 | |
B1002784 | 21 |
B1002488 | 73 |
B1101726 | 60 |
B1002547 | 71 |
B1002598 | 75 |
B1002530 | 60 |
B1003098 | 67 |
B1002575 | 54 |
B1002584 | 74 |
B1003106 | 51 |
B1003128 | 56 |
B1002543 | 67 |
B1100055 | 55 |
B1002560 | 73 |
B1002919 | 71 |
B1003231 | 73 |
B1003120 | 71 |
B1002689 | 64 |
B1003131 | 62 |
B1002851 | 75 |
B1002688 | 64 |
B1002946 | 62 |
B1003146 | 51 |
B1002609 | 61 |
Ivan yun | 68 |
chen lynn | 69 |
Wednesday, December 7, 2011
HA07(J) FP1 Mock Result
Tuesday, December 6, 2011
C3 Trigonometry Formulas
$\sin^{2} {x} +\cos^{2} {x}=1$
$\tan^{2} {x} + 1 = \sec^{2} {x}$
$ 1 + \cot^{2} {x} = \csc^{2} {x}$
$\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\tan (\alpha \pm \beta) = \frac { \tan \alpha \pm \tan \beta} {1 \mp \tan \alpha \tan \beta}$
Subscribe to:
Posts (Atom)